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Abstract 

It is predicted that, at some sufficiently high level of 
sensitivity, two streaks intersecting at the Bragg point 
and symmetrically situated about the reciprocal- 
lattice vector G should always be observable in a 
diffraction experiment. 

Introduction 

We show here that the close examination of a Bragg 
point G in any diffraction experiment will reveal the 
presence of two streaks, intersecting at G and sym- 
metrically situated about the radial line leading from 
the origin of reciprocal space to the point G, as shown 
in Fig. 1. The angle X between the two streaks will 
depend upon the instrumental parameters as dis- 
cussed below, but can be expected to approach 20~ 
in most cases. We believe that the occurrence of these 
streaks is a very general instrumental phenomenon, 
and will be observed at some level of sensitivity in 
all experiments. Our thinking here is guided by 
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Fig. 1. Orientation of instrumentally generated streaks in 
reciprocal space. 
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experience with high-resolution high-sensitivity 
triple-axis neutron diffraction experiments, which can 
routinely be carried out in the sensitivity range of 
10 -4 to  10 -6 of the Bragg point intensity. The reason- 
ing and analysis given here apply equally well to 
high-sensitivity X-ray diffraction experiments, such 
as those designed to examine Huang scattering or 
thermal diffuse scattering (TDS). 

We label the two streaks type I and type II. The 
occurrence of the type I streak is well known, 
although its physical origin is rarely examined in any 
detail. It occurs when the Bragg point G falls on the 
sphere of reflection, giving a strong reflected beam at 
a scattering angle 20 = 20B, but the detector is situated 
at an angle y away from the nominal scattering angle 
20n that is required to fully accept this Bragg beam 
(Fig. 2). Normally, if y is several times the resolution 

/•D (13) Detector/Analyzer 
Soller Collimator 

III Detector 
I1~ Acceptance 

ct ion  

Incident \ ~" / 
Beam Soller ~ 
Colh'mator ~ Vacuum Container 

~ n  T°(°) 
t Beam 

O- -~  

Fig. 2. Schematic diagram of typical diffraction experiment, show- 
ing the possibility of small-angle scattering of the incident and 
diffracted beams by the vacuum container surrounding the 
sample. The small-angle scattering has the effect of creating an 
incident beam I0(ot) having a broad component in addition to 
the original narrow component. Small-angle scattering in the 
diffracted beam leads to a detector acceptance function D(fl) 
having a broad component in addition to a narrow component. 
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width of the detector Soller collimator, we assume 
that few, if any, Bragg-reflected neutrons will be coun- 
ted. However, we know that at some level of sensitivity 
some neutrons will penetrate through the Soller 
blades and be reflected by the tail of the analyzer 
crystal's mosaic distribution. We claim, therefore, for 
this reason at least, that the detector/analyzer accep- 
tance function D(/3) will involve two parts: a very 
narrow part due to neutrons passing directly through 
the Soller slits, and a much broader part due to 
neutrons penetrating the Soller blades. This is shown 
in Fig. 2. There are other physical origins of the broad 
part of D(/3). For example, the neutron when 
penetrating the sample capsule, cryostat heat shields 
or vacuum container will suffer small-angle scattering, 
thus broadening the narrow distribution of Bragg- 
reflected neutrons. At some level of sensitivity air 
scattering will also play a role. The neutrons being 
counted due to the broad part of D(/3) appear as a 
streak of type I in reciprocal space, as shown in Fig. 1. 

We now show that there is another streak (type I I) 
situated symmetrically with respect to the reciprocal- 
lattice line OG. The angular distribution of incident 
neutrons Io(a) must also have two parts (a narrow 
component and a broad component) for the same 
physical reasons mentioned above. That is, some 
small fraction of the neutrons leaving the mono- 
chromator will penetrate through the Soller blades, 
and /or  be small-angle scattered on their trajectory to 
the sample. For simplicity, let us first suppose that 
all neutrons are of a given fixed wave vector ko. Thus, 
the Bragg angle is a very definite angle 0 ° - -  
sin -1 (G/2ko). Let us also suppose that the sample is 
a perfect single crystal. Thus, a Bragg scattering pro- 
cess takes an incident neutron at angle a [with proba- 
bility Io(a)] and reflects it to an angle 20°+a  at 
which point it is counted with probability D(/3), 
where /3 = a - 3 ' .  It is easy to see from the Bragg- 
scattering triangle that, for a neutron in the incident 
beam at angle a to be Bragg scattered by a perfect 
crystal, the crystal must be rotated by an angle ¢ = or, 
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Fig. 3. Diagram showing how the Bragg scattering process acts as 
a caliper of fixed 'length' 20~ on the scattering-angle scale, 
carrying neutrons from a point a =~, on the incident-beam 
distribution to a point 20~ + ¢ on the detector acceptance func- 
tion distribution. 

and thus fl = ¢ - 3 ' .  Consequently, the scattered 
intensity L(¢,  y) as a function of crystal setting 
and detector setting y is simply 

Is(~, 3,) = Wolo(~)D(¢-3,) ,  (1) 

where Wo is the probability for Bragg scattering. The 
Bragg scattering process thus acts as a caliper between 
the incident distribution lo(a) and the detector 
acceptance function D(/3) as shown in Fig. 3. We see 
from this figure that (for fixed 3,) as the left marker 
of the caliper moves through the sharp peak of lo(a) 
(as ~ is varied) the right marker moves along the 
broad part of D(/3), giving rise to a sharp low- 
intensity peak at ~ =0.  This is the type-I streak. 
Likewise, as the right marker moves through the sharp 
component of D(/3) as ~ is increased, the left marker 
moves along the broad part of lo(a), giving rise to 
another sharp low-intensity peak at ~ = 3,. This is the 
type II streak. The apparent orientation of these 
streaks in reciprocal space is obtained by noting that 

zaQy = (3,GI2) cot 0B (2) 

and 

zaQx = ( G/2)( 3,- 2¢), (3) 

as shown in Fig. 4. Here ~ is along G and ~ is 
perpendicular to G, and the nominal spectrometer 
scattering vector Q = A Q + G. Thus for a type-I streak 

~ = 0 ,  AQyl AQx=cot 0~, (4) 

and for a type-II streak 

~= % AQy/ AQ~=-cot  OB. (5) 

Thus, the angle )( between the streaks shown in Fig. 1 
is 20B. 

Incident Beam 

Fig. 4. Drawing to show how the spectrometer setting (AQx,/tOy) 
relative to the Bragg point G depends on the crystal angle 
and the detector setting 3'. 
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Effect of sample mosaic spread 

We now attempt to model these processes in a more 
general and precise manner, taking into account first 
the finite mosaic spread of the sample crystal. The 
beam emerging from the monochromator assembly 
and incident upon the sample is distributed in a small 
region of k space surrounding the nominal incident 
wave vector ki shown in Fig. 5. We represent this by 
the sum of two ellipsoidal distributions, one narrow 
and one broad. Similarly the acceptance function of 
the detector/analyzer system is the sum of two distri- 
butions, one narrow and one broad, centered on the 
nominal wave vector ks. Neutrons in the incident 
distribution I0(Aki) are carried to the detector distri- 
bution D(Ak: )  by Bragg scattering in the sample 
crystal. In order to calculate the counting rate Is(~, 3') 
as a function of crystal angle ~ and detector angle 
y, we regard the center of neutron k space as the 
origin of coordinates, as shown in Fig. 5. That is, the 
origin of the crystal's reciprocal lattice is allowed to 
move as a function of ~ in this diagram. The advan- 
tage of this is shown in Fig. 6. A perfect crystal set 
at ~ = 0 scatters incident neutrons from the line A-A 
to the line B-B. Rotating the crystal through an angle 

then allows the Bragg scattering process to transfer 
neutrons from a line A'-A' (nearly parallel to A-A) 
to line B'-B' (nearly parallel to B-B). We now use 
this fact and Fig. 5 to calculate I~(q~, y). 

We assume that Io(aki) is the sum of two Gaussian 
functions and likewise that D(Ak r) is the sum of two 
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other Gaussian functions. For simplicity, we first 
assume that the incident beam is nearly monochro- 
matic. (In the next section we will relax this require- 
ment.) Then, for a given setting of the crystal ~, the 
counting rate will depend upon the product of these 
functions, each integrated along the kx axis. We thus 
need only 

Io(Ak,y)=~ lo(Aki..Ak,y)d(Ak,.) (6) 

and 

D(Akfy) = I D(Akfx, Akfy)d(Akyx). (7) 

It is only the projection of the wave vectors onto 
the y axis that enters this calculation. A diagram 
which is the analog of Fig. 3 is shown in Fig. 7. The 
20 axis is replaced by Ky, and we have allowed the 
crystal to have a Gaussian distribution with a mosaic 
spread parameter r/. The following definitions are 
useful: 

M = ½G(cot O~)rl, (8) 

qb -  ½G(cot 0B)~ (9) 
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Fig. 6. A perfect crystal Bragg scatters neutrons distributed on the 
line A-A to the line B-B in k space. When the crystal is rotated 
through a small angle ~, the Bragg scattering process then carries 
neutrons from the line A'-A' to the line B'-B'. 
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Fig. 5. Diagram showing the narrow and broad distributions of 
incident neutrons, and how they are connected by the Bragg 
scattering process to the narrow and broad parts of  the detec- 
tor/analyzer acceptance function. 

X°(K ')=A'e-K~=/2a~ +B 'e -K~/2b~ I D[K,--(G+I ') ]  

1 / c r y s t a l  mosaic /~ =A=e -tK=--(G't 'F)]=/2a~ 

Ill A, / A=/II +B=e-rK,--(G+r)]'/2b; 

o ® ® + ,  K a 
KI Y - "  J \ 

(G+®) j '  \ P-'t"h+&=K = 

Fig. 7. This diagram is analogous to Fig. 3, except that the 20 axis 
is rescaled to be a wave vector Ky, where ~ is along G; and the 
sample crystal has a mosaic width. This diagram is used in 
deriving the expressions for the intensity Is(~,F) given by 
equations (11) and (19). 
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and 

F = ½G(cot OB)y. (10) 

The width parameter a, of the narrow part of Io(a) 
is directly related to the monochromator mosaic 
spread and its collimation. The width parameter a2 
of the narrow part of D(/3) is calculable from the 
analyzer mosaic spread and its associated collimation. 
The width parameters b~ and b2 depend upon the 
physical origin of the broad distributions. The count- 
ing rate is easily seen to be 

I,(@, F) = .[ Io(K,) W(Ka --> K2) 

x D ( K 2 - G - F ) d K ~ d K 2 ,  (11) 

where 

W(K~-> K2)= Woexp ( -A/2M2)8(K2 - K , - G ) ,  

(12) 
and 

Io(K,) = A~ exp (-Kz~/Za2)+ B, exp (-K~/2b2), 

(13) 
and 

D ( K 2 -  G -  F) = 32 exp [ - ( K 2 -  G - r):/Za~] 

+ B2 exp [ - ( K 2 -  G - F ) 2 / 2 b 2 ] .  

(14) 

We find after integrating over the delta function in 
(12) that 

K~ = q~+A (15) 

and 
K2= G+K~ = G +  @+A. (16) 

The wave vector ,4 is related to the mosaic angle 6 by 

,4 = ½G(cot 0~)6, (17) 

where the Gaussian distribution of the orientation of 
mosaic grains is 

W(6)=(2'/27rrl) -~ exp (-62/2r/2). (18) 

Thus, we have to evaluate the single integral 

I~(qO, F)  = J Io(Crp+,4)Woexp(-,42/2M 2) 

x D ( ~ + ' 4 - C )  d'4. (19) 

This result is identical to (1), except that now we 
must integrate over the mosaic distribution of the 
sample. The integral (19) involves four terms, each a 
Gaussian integral which can be explicitly carried out. 
The nominal spectrometer setting in reciprocal space 
is given by (AQx, AG), where, according to (2) and 
(3), 

@ = ½('4Qy- cot OBAQ,,) (20) 

and 

r = , 4 G .  (21) 

Table 1. Summary of Gaussian parameters 

Main Bragg peak, very strong 
(i =0) 

( 2~r '~ '/2 
No = \ 2--~p 2t ] Wo A2 

tro = 2a tan 08 \--~-pl2 ] 

/Xo = (2t/2)a 

So=O 

Type-I streak (i = 1) 
2zr .~ ,/2 

N, = a WoAB 
l + p ~ + p ~ ]  

(l+oo~+oh ''~ 
o" l = 2 a  t a n  08 _ - ~ -  _-5-7-~_z 

\ Pt+PoP, ] 
lz~ =b 

(1-p2o'~ 
S' = \ 1---~noZOoZ ] tan 08 

Broad Bragg peak, very weak 
(~=2) 

N 3 = b \ 2  + p2] Wo B2 

¢3 = 2b tan 0~ \--~-~p~ / 

/x3 = (21/2)b 

83 = 0 

Type-II streak (i =2)  

N2= a 1+02+02,] W°AB 

(!+e~o+d~ ',2 0" 2 = 2a tan 0a 2 
\ P,+PoP, ] 

/x2= b 
_(1-0o2~ 

S2 = \ 1--~po21 tan 0n 

Thus, we can write an explicit expression for the 
counting rate at a spectrometer setting ('4Qx, "4Qy): 

I,(aQx, A G )  

- ~ N, e x p [  (AQ"-S'AQy)2 (AQ')2] 
-,=o - 2o'~ ~-~2 j. (22) 

For simplicity in quoting the results for the parameters 
Ni, Si, o'i and/.Li, we assume that the spectrometer is 
symmetrically configured, such that a = a, = a2, b = 
b, = b2, A - A 1  = A2 and B = B, = B2. We define the 
ratio of the width of the narrow distribution to the 
width of the broad distribution as 

po=-a/b, (23) 

and the ratios of the widths of the narrow distribution 
and the broad distribution to the crystal mosaic width 
(M) as 

Pl = a~ M (24) 

and 

p2=b/M.  (25) 

Table 1 gives a summary of the results for the 
Gaussian parameters entering (22). The slope 
(AQ,,/AQy) of the type-I streak is S~ and of the type-II 
streak is S2. Thus, the angle X between the type-I and 
type-II streaks is given by 

tan (X/2) = \1 + p~,] tan G. (26) 

The angle )t' will always be less than 20n. 
When the crystal mosaic spread is small, the width 

of a transverse scan through the main Bragg peak is 
o.o = 2 '/2a tan 0B, while the width of a transverse scan 
through one of the streaks is o'1 = o'2 = 2a tan 0B ; that 
is, a factor of 2 '/2 broader. 
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Effect of wavelength spread 

It is well known that the angle-wavelength correlation 
in a beam produced or analyzed by Bragg scattering 
in crystals creates complicated, and sometimes sur- 
prising, resolution effects in triple-axis neutron and 
X-ray scattering experiments. In this section we take 
these correlations into account. At the same time, we 
will also model the effects of the small-angle scattering 
taking place in the incident beam before reaching the 
sample crystal, and likewise the small-angle scattering 
affecting the diffracted beam before entering the 
analyzer system shown in Fig. 2. The analysis is rather 
cumbersome algebraically, but straightforward. The 
result of this calculation is the general elastic resolu- 
tion function of a triple-axis spectrometer. We will 
find that the results of the previous section are qualita- 
tively correct, though numerically only approximate. 
The resolution function for an X-ray triple-axis spec- 
trometer has recently been discussed by Cowley 
(1987). The analysis here is considerably more com- 
plicated because it takes into account the effects of 
small-angle scattering in the incident and diffracted 
beams. 

The beam incident upon the sample is distributed 
over a small volume in k space (centered at k °) 
described by the function Io(Aki), where 

Ak, = k , - k  ° , (27) 

and the analyzer/detector system accepts scattered 
neutrons within a small volume in k space (centered 
at k~) described by the function D(Aky), where 

Akf = k s - k  ~ . (28) 

Bragg scattering by the sample carries neutrons from 
a point A k~ within the first volume to a point A ky 
with probability density W ( A k ~ A k y ) .  Thus, the 
counting rate at a given setting (AQx, AQy) of the 
spectrometer is given by 

Is(AQx, AQy)= ~ Io(Aki) W(Ak,-* AkI )D(Aky)  

xd (Ak~x) d(Ak,y) d(Aksx ) d(Akfy). 

(29) 

This four-dimensional integral is the generalization 
of the two-dimensional integral, (11), of the previous 
section. For Bragg scattering in a mosaic grain orien- 
ted at an angle specified by A, in a crystal oriented 
at an angle specified by @, with the detector/analyzer 
system set at an angle specified by F, we find with 
the help of Figs. 4 and 5 that 

Akyy = Ak ,y -  F, (30) 

Akfx = Akt~ + tan 0B[ 2 @ + 2A - F],  (31 ) 

and 

A = Ak~y - crp. (32) 

Thus the function W(Ak~ ~ Akl) contains two delta 
functions, and it is explicitly given by 

W(Ak,-~ Akl)= Wo exp [-(Ak,y-½aQy 

+½ cot OsaQx)2/2M 2] 
xS(aksy - a k ,  + aQy)8(aksx - Ak,x 

- 2 t a n  OsAk, y+tan OsAQy), (33) 

where we have used (20) and (21) to replace q~ and 
F by AQx and AQy. As in the previous section, we 
assume that Io(Ak~) consists of two parts. Here we 
explicitly assume that the narrow part is due to the 
intense beam arriving at the sample without suffering 
any small-angle scattering, while the broad weak part 
is due to the fraction of the incident beam which 
penetrates the Soller slits or experiences small-angle 
scattering in the cryostat vacuum can, heat shield or 
sample capsule before striking the sample. 

We first describe lo(Aki) in the primed coordinate 
frame shown in Fig. 8, where £' is antiparallel to ki 
and Y' is perpendicular to k~. The narrow (n) intense 
part of lo(Ak~) is of the form 

I~(Ak~)=toloexp(-½H,, , )  (34) 

where Hi, is of the biquadratic form 
p 2 t 2 Hi,, = ai,,Akix,+ b~,,Ak,x,Akiy,+ c~,,Ak~y,. (35) 

The subscript i signifies the incident beam, and the 
subscript n denotes the narrow part of the incident- 
beam distribution in k space. The coefficients a~,, bl, 
and c~, are related to the Gaussian parameters ao, 
a~ and r/m characterizing the source-to-mono- 
chromator and monochromator-to-sample colli- 
mations and the monochromator mosaic spread 
respectively. Using the results of the paper by Werner 
& Pynn (1971), we can write 

, sin 2 20,. tan 2 0,. 
ain-- 2 2 ~ 2 2 , (36) 

koao koTlm 

sin 40m 2tan Om 
b~, - - - +  - -  (37) 2 2 2 2 koa o ko rl m 

ly_. 
~X G 

Fig. 8. Coordinate frames used in writing the components of Ak~ 
and Akf. 
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and 

, cos 2 20,, 1 1 
c i . -  2------------5- ~ - , - 5 - - - ~  -~ 2 2 • ( 3 8 )  

koao ~:oal korlm 

The coefficient to specifies the fraction of the incident 
beam transmitted directly to the sample crystal 
without being affected by small-angle scattering, 0m 
is the monochromator Bragg angle and ko is the 
nominal wave vector. A certain small fraction ro of 
the incident beam will be small-angle scattered by 
the cryostat vacuum container and heat shield before 
reaching the sample. For our purposes, we suppose 
that we can model the probability for this to occur 
by a Gaussian function with an angular width e such 
that 

r(Aki-~ Ak'i) - ro [ (Aki'y,- Akiy, )2  ] 
(27r)1/2ko e exp - ~ e 2 ~  j 

x6(Ak;x, -Akix , ) .  (39) 

The delta function requires the small-angle scattering 
to be strictly elastic. Thus, the broadened part of 
Io(Aki) is 

lob(Ak;) J" lo(Aki)r(Aki-~. Ak;) d(Akix,) d(Akiy,) 

Ioro 
"~- t 2 2)1/2 exp (½Hib), (40) 

(1 + cinkoe 

where 

and 

Hib = a i b A k i x  " + '  2 bibAkix.Akiy,+, cibAki/,, 2 (41) 

( bln 2ko  >) 
a'ib=ai. 1 4a;,,(c;.e2kg+l ' (42) 

= ' ' e2k2+l) ,  (43) b;b bi./(ci,, 
t t t 2 2 

Ci b = Cin/(Cing ko+ 1). (44) 

Thus, as e ~ 0, Hib ~ Hi,, an obvious result. 
The analyzer/detector acceptance function D(A ky) 

will have a form analogous to lo(Aki). We first 
describe it in the double-primed coordinate system 
shown in Fig. 8. For the narrow part of D(Ak/)  we 
have 

D " ( A k f ) = t o D o e x p ( - ½ H f , ) ,  (45) 

where 

= af.Akfx,,+ cf,,anfy,. (46) Hy. " 2 b~,,Akyx,,Akn,, + _,, ,, ,_2 

The coefficients ay., by., cy. are related to the 
Oaussian parameters a2, a3 and ~A describing the 
sample-to-analyzer and analyzer-to-detector collima- 
tions and the analyzer-crystal mosaic spread respec- 
tively: 

ay, tan20A sin220A 
- -  2 2 ~ 2"-----------~ ' (47) 

k o ' q A  koc¢ 3 

sin 403 2tan 0 A 
b y n -  2 2 2 2 , (48) 

koa 3 ko rl A 

cos 2 20A 1 1 
C~,-- 2 2 ~-,'7%---~ + 2-----T" (49) 

k o a 3  K0t~ 2 ko 'qA  

The Bragg angle of the analyzer is 0A. 
The broad part of D(Akl) ,  due to small-angle 

scattering effects, is given by 

Doro 
Db(Ak f )  = (1 + cy.Koe ,, -2 2),/2 exp (-½H~) (50) 

where 
H f o  . - - / 2  . = aj.o/.iKfx,, + b f b A k f x . A k f y , ,  + _,, . L 2  c'roaKj> .... (51) 

The coefficients a~o, b~o, c~o describing this broad 
distribution are related to the coefficients describing 
the narrow distribution (ay., by., c;.) by equations 
identical to (42), (43) and (44) where the single primes 
are replaced by double primes, and the subscript i is 
replaced byf. We have explicitly assumed the conven- 
tional 'W '  configuration of the spectrometer in writ- 
ing the coefficients in (47), (48) and (49). If the 
analyzer/detector system is rotated to the antiparallel 
side of the diffracted beam. the sign of the coefficient 
by. should be reversed. 

We now have the task of carring out the four- 
dimensional integral given in (29) for the counting 
ra te / , (ZIG,  AQy). The expression (33) for W(Ak,-~ 
Aky) contains two delta functions and therefore 
reduces the four-dimensional integral in (29) to a 
two-dimensional integral. In order to carry out this 
integral explicitly, it is necessary to write Hi,, Hib, 
Hf,, and H£o in the common x - y  coordinate frame 
of Fig. 8, where ~ is parallel to G and ~ is perpen- 
dicular to G. This requires a simple coordinate-frame 
rotation in writing the components of A ki and A ky. 
If we define a vector 

Prq = ( arq , brq , Crq ) (52) 

consisting of the parameters in the biquadratic form 
for each of the H's,  and a rotation matrix in terms 
of the sample Bragg angle G, 

/cos  2 0, -½ sin 20, sin 2 0, \ 

R(0) = "[sin 20, cos 20, - s in  20.}, (53) 
\ s in  2 0, ½ sin 2G cos 2 0, ] 

then the coefficients in the common unprimed x-y  
coordinate frame (Fig. 8) describing the narrow (n) 
and broad (b) components of the incident (i) and 
final ( f )  analyzed beams are given by 

P,, ,=R(O,)P;. ,  (54a) 

P,b = R(0,)P',b, (54b) 

Py. = R ( -  G)P~., (54c) 

and 

Pro = R ( -  G)P~o. (54d) 
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We now have explicit expressions for the four sets of 
coefficients (arq, brq, Crq) describing the narrow and 
broad components of the incident and diffracted 
beams in the common x - y  coordinate frame, in terms 
of the instrument parameters a0, a~, a2, or3, 9"]A and 
r/M, the three Bragg angles OM, 03 "and 0s, and the 
width e of the small-angle scattering. 

After a considerable amount of algebraic manipula- 
tion we again find that the counting rate I~(AQ,,, AQy) 
can be written as the sum of four terms of the form 

Nn exp [ (AQx-ShAQy)2 (AQY)21 j ,  (55) 

analogous to (22). The first of these terms (h = 0) is 
the main Bragg peak coming from Bragg scattering 
of neutrons (X-rays) in the narrow part of Io(Aki) 
into the narrow part of D(Aky).  The second term 
(h = 1), giving rise to streak I, is due to neutrons in 
the narrow part of Io(Aki) Bragg scattering into the 
broad part of the acceptance function D(Akf) .  The 
third term, giving rise to streak II, is due to neutrons 
in the broad part of Io(Aki) Bragg scattering into the 
narrow part of the acceptance function D(Aky).  The 
fourth term (h = 3) is due to Bragg scattering from 
the broad part of the incident beam into the broad 
part of the acceptance function, and is negligibly 
small. 

The parameters Oh, /Xh and Sh characterizing each 
of these four Gaussian (h = 0, 1, 2, 3) components of 
Is(AQx, AQy) are given by 

( t o'h = 4 tan 2 05 t- G2rl~ , (56) 
Uh 

= (57) 
Id'h \ 4UhWh -- 1.) ' 

and 

Sh _ Uh +/)h  (58) 
Uh cot 05" 

Here r/5 is the sample mosaic spread parameter and 
G is the magnitude of the reciprocal-lattice vector. 
The parameters Uh, Vh and Wh depend upon the 
coefficients (a,q, brq, Crq) in the biquadratic H's ,  writ- 
ten in the unprimed x - y  coordinate frame: 

U h = Cig "JI- Cfg'-- (big + b fg , )2 /4(a ig  -}- afg,) 

2 tan 0s 
4 ( a i g b f g , -  bigafg, + 2aigafg, tan 05), 

( aig + a fg, ) 
(59) 

Vh = --2Cfg, + bfg,( big + bfg,)/2( aig + afg,) 

tan 05 (bigafg,-3aigbyg,-4aigafg, tan Os) 
+ (aig + asg,) 

(60) 

and 

Wh = Cfg,-- b}g,/ 4( aig + afg,) 

tan 0s 
"q ( aigbfg, + aigafg, tan 0s ). (61 ) 

( aig + afg,) 
The first subscript on the coefficients a, b and c 
denotes the incident (i) or final ( f )  diffracted beams. 
The second subscript, g or g', denotes the narrow (n) 
or broad (b) components of Io and D. The subscripts 
on u, v and w are ordered such that h = 0  corre- 
sponds to the scattering I~-->D"; similarly h = 1 
corresponds to the scattering process I~--->D b, 
h = 2 corresponds to Iob-> Dn, and finally h = 3 corre- 
sponds to lob-> D b. 

Discussion and numerical examples 

As anticipated, the results of the calculation in the 
previous section are algebraically complicated. 
However, there are a few general conclusions that 
can easily be made. 

(1) Scans transverse to G (that is, varying AQx, at 
fixed AQy) will yield three peaks, corresponding to 
h = 0 (tail of the main Bragg peak) and h = 1 and 2 
corresponding to streak I and streak II. (The broad 
h = 3 peak will, in general, have negligible intensity.) 
The relative magnitudes of these peaks will depend 
upon the strength ro of the small-angle scattering in 
the incident and diffracted beams. 

(2) The angle Xh/2 of the streaks is given by 

Xh/2=tan -1Sh. (62) 

If the small-angle scattering in the diffracted beam 
has a broad distribution (e large) then the coefficients 
a~,, b~o, c~, will be small, and vl will approach zero. 
Thus, according to (58), X1/2 will approach 0s. Like- 
wise, if the small-angle scattering in the incident beam 
has a broad distribution (e large), then aib , bib and 
Cib are small, and /)2 approaches --2//2, and X2/2 
approaches -0s.  Thus, the angle between streak I and 
streak II asymptotically approaches 20s as e becomes 
large. 

(3) The sample mosaic spread (rls) affects only the 
width (Oh) of the peaks as observed in transverse 
scans. It does not affect the orientation (Xh) of the 
streaks in reciprocal space, or the rate (P-h) at which 
the intensity falls off along the streaks. 

The central motivation in carrying out this calcula- 
tion has been to provide a systematic method for 
characterizing the weak streaks as a function of the 
strength ro and width e of the small-angle scattering 
occurring in the incident and diffracted beams. We 
show results of selected numerical calculations in 
Figs. 9 and 10. The angle X/2 of the streaks in 
reciprocal space, the transverse width o of the streaks, 
and the rate/x at which the scattered intensity drops 
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off from the Bragg point  along the streaks are plotted 
as a function of  the Gauss ian  width paramete r  e 
characterizing the small-angle scattering. The param-  
eters characterizing the triple-axis spectrometer  are 
given in the figure captions. For Fig. 9, the nominal  
wavelength is 4 .07/~,  and for Fig. 10 the nominal  
wavelength is 2.35 A. These wavelengths correspond 
to conveniently filtered monochromat ic  neutron 
beams using Be and pyrolytic graphite,  respectively. 
(A Gauss ian  width e = 7 . 4 m r a d  corresponds to 
small-angle scattering having a full width at half- 
max imum F W H M  = 17.4 mrad = 1°.) The angle X/2 
saturates at a value equal to the Bragg angle 0s as e 
gets large, as expected. The transverse width tr 
increases quickly and then levels out at a saturat ion 
value, while the parameter  /x continues to increase 
(nearly linearly) with increasing e, thus showing that 
the intensity is distributed over a longer segment of  
the streak as the small-angle scattering broadens.  The 
parameters  appropr ia te  to the tail of  the main Bragg 
point correspond to e = 0 on these plots. In the simple 
calculation, where we ignored the effects of  the angle-  
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Fig. 9. The three panels show the angle X/2 of the streaks in 
reciprocal space, the transverse width tr of the streaks, and the 
rate /x at which the intensity drops off along the streaks as a 
function of the Gaussian width e of the small-angle scattering. 
Os is the sample Bragg angle. The neutron wavelength is 4.07 A 
(/% = 1.544 ,~- 1 ). The monochromator and analyzer are pyrolytic 
graphite (002), with mosaic widths of 40' FWHM. The triple-axis 
collimations are 40'-20'-20'-40' FWHM. The sample mosaic 
spread r h = 0. 

wavelength correlations,  the predicted ratio of  the 
transverse width of  the streaks to the width of  the 
main Bragg peak approaches  2 ~/2. Here, this ratio of  
widths is found to depend  on the sample Bragg 
angle 0s. 

We show in Fig. 11 a series of  transverse scans 
corresponding to the parameters  of Fig. 9 (A = 
4.07 ~ )  for 0s = 35 ° (G  = 1.77 A-~),  and e = 10 mrad.  
The monochromato r  and analyzer are pyrolitic 
graphite (002), d spacing 3-354 ~ ,  so that 0A = 0M = 
37.35 °, and the mosaic spreads r/A = r/.M = 4"94 mrad 
(=40 ' )  F W H M .  The collimations are 40 ' -20 ' -20 ' -40 '  
F W H M ,  and the sample mosaic spread r/+ = 0. We 
have taken the maximum streak intensity (at AQx = 
AQv = 0) to be 10 -a relative to the central Bragg point. 
The angle X/2 of the streaks is 30.4 °. It is interesting 
to note how rapidly these transverse scans evolve 
from a two-peaked pattern,  through a narrow region 
where three peaks are observed, and into a single 
rapidly rising central peak (the tail of  the main Bragg 
point). 

Fig. 12 shows a map  of contours of  constant  
intensity. The parameters  used are the same as for 
Fig. 11. The numbers  on the contours are powers of  
10. The Bragg point is at AQx = AQ v = 0 and is taken 
to have unit intensity. The units of  the axes are A-1 
Since the reciprocal-latt ice vector G = 1-77 ,~-] for 

0 5 10 15 20 25 
8 (m+ad) 

Fig. 10. Numerical results which are analogous to Fig. 9, except 
here ;t = 2.35 A, (/% = 2-674 A,-I), and the collimations are 20'- 
10'-10'-20' FWHM. 
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this example, it is seen that the region of  reciprocal 
space displayed in Fig. 12 is very small. 

It has been suggested recently by Pintschovius, 
Blaschko, Krexner, de Podesta & Currat (1987) that 
the structure seen by Giebultowicz, Overhauser & 
Werner (1986) in potassium metal at 4.2 K near the 
110 reciprocal-lattice point may be due to this instru- 
mental streaking effect, and not due to charge-density 
wave (CDW) satellites. This has recently been investi- 
gated using an Si crystal by Werner, Giebultowicz & 
Overhauser (1987) on the same triple-axis spec- 
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Fig. 1 I. Transverse scans in the vicinity of a Bragg point. The 
spectrometer parameters are as given in the caption to Fig. 9. 
The sample Bragg angle 0s = 35 °, and the Gaussian parameter 
e characterizing the small-angle scattering is taken to be 10 mrad. 
The maximum streak intensity is 10 -4 of the Bragg-point 
intensity. For this example, the parameters in expression (55) 
characterizing the intensity are: (ro=2-75x 10 -3 ,~-!, /Zo= 
5-5 X 10 -3 ,Z~ -1, S O = 0; O't = @2 = 4"47 x 10 -3/~k -1, ]'£1 = / ' £ 2  = 

13.6x 10 -3 A -t, S I =0"586 and $2 = 0.586. 

0.06 

0.04 

0.02 

0 

-0.02 

-0.04 

-0.06 

i i 

X 

\ ~  2 

\ \  

Streak X / 

i i 
..,,-_. X. 

2-~,, 

/ /  

\\Streak Z 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 

AQ x 

Fig. 12. Contour map of the intensity surrounding the Bragg point. 
The instrumental parameters used in this calculation correspond 
to the numbers given in the caption to Fig. 11. The numbers 
given on the contours are powers of 10. The intensity at the 
Bragg point (AQx = AQy = 0) is 1.0. 

trometer at the National Bureau of Standards on 
which the original potassium experiments were done. 
Structure near the 111 point in Si was observed, but 
of intensity four times less than in potassium. A final 
resolution of the correct interpretation of the 
potassium data will depend upon the outcome of 
additional future experiments. We hope that the 
detailed theory of the triple-axis instrumental effects 
near a Bragg point provided by this paper will be 
helpful in this task. 

It appears to us that an awareness of the instru- 
mentally generated streaking structure near a Bragg 
point discussed here may prove to be important in 
analyzing X-ray experiments designed to observe 
TDS and Huang scattering. 

Finally, we would like to point out that there is 
another source of instrumentally generated structure 
near a Bragg point in triple-axis neutron 'inelastic' 
scans, discussed by Currat & Axe (1978) and by 
Shirane (1983). Peaks are observed for a triple-axis 
configuration when two crystals out of the three 
(monochromator,  sample, analyzer) satisfy a Bragg 
condition for a given neutron energy. For example, 
there is always a small component of the incident 
beam which is not exactly of the primary energy E0, 
but due to incoherent or inelastic scattering of 
neutrons of adjacent energies E. At certain (predict- 
able) spectrometer settings, the sample crystal and 
the analyzer crystal will both be set to Bragg scatter 
these 'contaminant '  neutrons. Processes of this type 
give rise to a line of  singularities (peaks) in A E - q  
space, mimicking a phonon dispersion relation 
terminating at the Bragg point. They can be charac- 
terized by the sequence of  processes: phonon-Bragg-  
Bragg. A similar sequence, Bragg-Bragg-phonon,  
arises from inelastic scattering in the analyzer crystal 
giving another apparent line of singularities in d E - q  
space. The sequence Bragg-phonon-Bragg is the 
'true' line of  singularities due to phonon scattering 
in the sample. It is important to realize that the 
physical origin of these spurious 'inelastic' peaks is 
completely different from the origin of  the 'elastic' 
streaks discussed in this paper. 

This work was supported by the National Science 
Foundation,  Physics Division through grant No. 
NSF-PHY-8410683. 
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Abstract 
Application of simple Bloch-wave theory to reflection elec- 
tron microscopy and diffraction leads to inconsistent results 
- there are not enough boundary conditions to generate a 
unique solution. To overcome this problem in the past the 
solution for a thick slab has been used instead of that for 
a single surface. It is shown that a simpler method valid 
for a single surface is to insist that only Bloch waves with 
current flow into or parallel to the crystal surface are 
allowed. Because of the equations of continuity, this is 
identical to insisting that only decaying waves are excited 
in the crystal. An additional feature of this simpler method 
is that the allowed Bloch waves can be readily represented 
on a dispersion-surface construction. 

In principle the basic analytical solutions for electron 
diffraction in a material can be directly solved by Bloch- 
wave methods. Whilst their application to transmission 
electron microscopy and diffraction is tried and tested, far 
less has been done to apply them to the important problem 
of reflection electron microscopy (REM) or reflection high- 
energy electron diffraction (RHEED).  The intention of this 
note is to point out an important physical point which we 
have encountered in the process of developing a numerical 
Bloch-wave program for the reflection case, namely the role 
of current flow in determining which Bloch waves are 
excited in the crystal. 

The basic theoretical methods for setting up the Bloch- 
wave solutions can be found in, for instance, the article by 
Metherell (1975) and will not be repeated here. In a nutshell, 
the problem reduces to matching from the incident wave 
vector to the dispersion surface along a line drawn normal 
to the surface of the crystal, as illustrated in Fig. 1. (We 
shall not discuss evanescent waves, as they do not play a 
role in our analysis here, although in reality they must be 
taken into account in any reasonable model of the diffrac- 
tion.) If one assumes that the line cuts the dispersion 
surface, there are two possible Bloch waves which can be 
excited in the crystal for each branch of the dispersion 
surface. Assuming n different branches, we therefore have 
a maximum of 2n different Bloch waves, n different reflec- 
ted waves and (after matching the wave and its derivative 
across the crystal surface) a total of 2n boundary conditions. 
As it stands we do not have enough boundary conditions 
to solve for the Bloch- and diffracted-wave amplitudes. 

In the conventional transmission electron diffraction case 
we solve the analogous problem by insisting that the Bloch- 
wave vectors must be directed into the crystal. For instance, 
in the high-energy approximation the wave vectors occur 

in plus and minus pairs, and we then neglect one of the 
signs (which depends upon the convention used in defining 
an incident plane wave). It rapidly became apparent when 
we tried some numerical tests that this does not work in 
the reflection electron case. The reason is that the two 
possible wave vectors for each branch of the dispersion 
surface need not arise in pairs directed into and out of the 
crystal, as illustrated in Fig. 1 (see also Table 1). A method 
proposed by Moon (1972) and by Colella (1972) and Colella 
& Menadue (1972) is to solve the problem instead for a 
thick slab with two surfaces rather than just one. Now there 
are enough boundary conditions, and in the limit of a very 
thick slab with absorption included only n Bloch waves 
will be excited within the the crystal. 

A simpler method of finding the additional n boundary 
conditions is to exploit the principle of causality. Physically, 
the electron beam must travel down the microscope column, 
reach the crystal surface and then either be reflected or 
enter the crystal. For any Bloch wave of general form 

b(r, k) =~ Cg exp [27ri(k+g). r] (I) 
g 

the direction of current and energy flow S (proportional to 
the expectation value of the Bloch-wave momentum and 
the group velocity of the Bloch wave and similar to the 

O 

Fig. 1. Illustration of matching from the incoming wave vector to 
the dispersion surface in the reflection case. For the branch 
shown, only wave 1 is excited in the crystal, not wave 2, even 
though the wave vectors for both (kt and k2) are into the crystal, 
as indicated by the current-flow directions $1 and $2. 
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